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Introduction

Theoretically, topological susceptibility is defined as

χtop =

∫

d4x 〈ρ(x)ρ(0)〉

where

ρ(x) =
1

32π2
εµνλσtr[Fµν(x)Fλσ(x)]

Veneziano-Witten relation

χtop =
f 2

πm
2
η′

4nf

Leutwyler-Smilga relation

χtop =
mqΣ

nf

(in the chiral limit)
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Introduction (cont)

Since

χtop =

∫

d4x 〈ρ(x)ρ(0)〉 =
1

Ω

〈

Q2
top

〉

, Ω = volume

where

Qtop =

∫

d4x
1

32π2
εµνλσtr[Fµν(x)Fλσ(x)] = integer

one can obtain χtop by counting the number of gauge
configurations for each topological sector.

However, for a set of gauge configurations in the
topologically-trivial sector, Qtop = 0, it gives χtop = 0
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Introduction (cont)

Even for a topologically-trivial gauge configuration, it may
possess near-zero modes due to excitation of instanton
and anti-instanton pairs, which are the origin of
spontaneous chiral symmetry breaking in the infinite
volume limit.

Thus, one can investigate whether there are topological
excitations within any sub-volumes, and to measure the
topological susceptibility using the correlation of the
topological charges of two sub-volumes.
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Introduction (cont)

For any topological sector with Qtop, using the translational
invariance and the central-limit theorem, one can obtain

lim
|x−y|→∞

〈ρ(x)ρ(y)〉 =
Q2

top

Ω2
−
χtop

Ω
+ O(Ω−4)

(see T. Onogi’s talk)

Thus, in the trivial sector with Qtop = 0, for any two widely
separated sub-volumes Ω1 and Ω2, the correlation of their
topological charges would behave as

〈Q1Q2〉 ' −
χtop

Ω
Ω1Ω2, Qi =

∫

Ωi

d4x ρ(x)
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Introduction (cont)

On a finite lattice, consider two spatial sub-volumes at two
time slices t1 and t2, measure the time-correlation function

C(t1 − t2) = 〈Q(t1)Q(t2)〉 =
∑

~x1, ~x2

〈ρ(x1)ρ(x2)〉

Then its plateau at large |t1 − t2| can be used to extract
χtop.

However, on a lattice, it is difficult to extract ρ(x)
unambiguously from the link variables !
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Topology with Overlap Dirac Operator

It is well known that the topological charge density can be
defined via the overlap Dirac operator as

ρ(x) = tr[γ5(1 − rD)x,x], r =
1

2m0

where D is the overlap Dirac operator

D = m0(1 + V ), V = γ5

Hw
√

H2
w

,

Hw = γ5(−m0 + γµtµ +W )
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Topology with Overlap Dirac Operator (cont)

Here ρ(x) = tr[γ5(1 − rD)x,x] is justified to be a definition
of topological charge density since it has been asserted
(Kikukawa & Yamada, 1998)

ρ(x)
a→0
−→

1

32π2
εµνλσtr[Fµν(x)Fλσ(x)]

Note that the index theorem on the lattice

index(D) = n+ − n− =
∑

x

ρ(x) = Qtop

had been observed by Narayanan and Neuberger in
1995, using the spectral flow of Hw(m0), before the
Ginsparg-Wilson relation was rejuvenated in 1998.
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Topology with Overlap Dirac Operator (cont)

It seems natural to use ρ(x) = tr[γ5(1 − rD)x,x] to compute the
topological susceptibility

χt =
1

Ω
〈Q2

t 〉 =
1

Ω

∑

x,y

〈ρ(x)ρ(y)〉 =
∑

x

〈ρ(x)ρ(0)〉

On the other hand, one can derive the relation

index(D) = m
∑

x

tr[γ5(Dc +m)−1
x,x] = m Tr[γ5(Dc +m)−1]

where

Dc = D(1 − rD)−1 = 2m0(1 + V )(1 − V )−1

is chirally symmetric but non-local (Chiu & Zenkin, 1998). Note that
for the topologically-trivial configurations , Dc is well-defined (without
any poles).
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Topology with Overlap Dirac Operator (cont)

Thus one can regard

ρ1(x) = m tr[γ5(Dc +m)−1
x,x]

as a definition of topological charge density, for any valence quark
mass m.

Obviously, the identity index(D) = m Tr[γ5(Dc +m)−1] can be
generalized to

index(D) = m1m2 · · ·mkTr[γ5(Dc +m1)
−1(Dc +m2)

−1 · · · (Dc +mk)
−1]

with the generalized topological charge density

ρk(x) = m1m2 · · ·mktr[γ5(Dc +m1)
−1(Dc +m2)

−1 · · · (Dc +mk)
−1]x,x
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Topology with Overlap Dirac Operator (cont)

Presumably, any ρk can be used to compute χtop.

In general,

χtop =
m1 · · ·mkmk+1 · · ·ml

Ω
〈Tr[γ5(Dc +m1)

−1 · · · (Dc +mk)
−1] ×

Tr[γ5(Dc +mk+1)
−1 · · · (Dc +ml)

−1]〉

It has been pointed out by Lüscher, for k ≥ 2 and l ≥ 5,
χtop avoids the short-distance singularities in the
continuum limit.
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Re-derive the Leutwyler-Smilga relation (Chandrasekharan,’98)

Consider the (p = 0) flavor-singlet pseudoscalar (η ′) correlator

Gη′ =
1

Ω

∑

x,y

〈ψ̄(x)γ5ψ(x)ψ̄(y)γ5ψ(y)〉

=
1

ΩZ

∫

[dU ] det(D)e−Ag [U ] ×

{

Tr[(Dc +mq)
−1γ5(Dc +mq)

−1γ5] −
(

Tr[(Dc +mq)
−1γ5]

)2
}

=
1

ΩZ

∫

[dU ] det(D)e−Ag [U ]

{

1

mq

Tr(Dc +mq)
−1 −

[

nf

mq

(n+ − n−)

]2
}

In the chiral limit mq → 0, if η′ stays massive, then its propagator
Gη′ ∝ m−2

η′ must be non-singular, which in turn implies

χtop =
1

Ω
〈(n+ − n−)2〉 =

mq

nf

Σ, Σ ≡
1

nfΩ
Tr(Dc +mq)

−1
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Lattice Setup (See Talks by Hashimoto, Kaneko, and Onogi)

� Lattice size: 163 × 32

� Gluons: Iwasaki gauge action at β = 2.30

� Quarks (nf = 2): overlap Dirac operator with m0 = 1.6

� Add extra Wilson fermions and pseudofermions

det(H2
ov) −→ det(H2

ov)
det(H2

w)

det(H2
w + µ2)

, µ = 0.2

to forbid λ(Hw) crossing zero, thus Qtop is invariant.

� Quark masses: msea = 0.015, 0.025, 0.035, 0.050,
0.070, 0.100, each of ∼ 1000 confs with Qtop = 0.

� For each configuration, 50+50 low-lying eigenmodes of
overlap Dirac operator are projected.
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Preliminary Results (using 396 confs for each msea)

On the 163 × 32 lattice, measure the time-correlation function

C(t1 − t2) = 〈Q(t1)Q(t2)〉 =
∑

~x1, ~x2

〈ρ(x1)ρ(x2)〉

t
0 5 10 15 20 25 30

<Q
(t)

Q
(0

)>

-0.005

0.000

0.005

0.010

0.015

163x32, �=2.30, mval = msea = 0.015

�1(x) = m tr[�5(Dc+m)-1]x,x

no. of low-lying eigenmodes = 50+50

no. of configurations = 396

JLQCD-TWQCD Collaborations/Dcm2corr/b230/msea0015
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Topological Susceptibility

a4χtop = −
32

163
〈Q(t1)Q(t2)〉 , |t1 − t2| = 16

am
0.00 0.02 0.04 0.06 0.08

0.0

1.0e-4

2.0e-4

3.0e-4

a4 �
to

p

163x32, �=2.30, mval=msea

�1(x) = m tr[ �5(Dc+m)-1]x,x

JLQCD-TWQCD Collaborations/topsus/b230

no. of low-lying eigenmodes = 50+50

no. of configurations = 396
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Realization of Leutwyler-Smilga relation

(am)(a3
�)/nf

0.0 2.0e-5 4.0e-5 6.0e-5

0.0

2.0e-5

4.0e-5

6.0e-5

a4 �
to

p

163x32, �=2.30

JLQCD-TWQCD Collaborations/topsus/b230

m=0.015

m=0.025

m=0.035

In the limit m→ 0, χtop → mΣ/nf , in agreement with the
Leutwyler-Smilga relation !
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Chiral Condensate

am

0.00 0.01 0.02 0.03 0.04 0.05 0.06

0.000

0.001

0.002

0.003

0.004

0.005

0.006

a3 �

163x32, �=2.30, mval=msea

JLQCD-TWQCD Collaborations/topsus/b230

no. of low-lying eigenmodes = 50+50

no. of configurations = 396

lim
m→0

a3Σ = 0.0023(1) (quadratic fit)

Use a−1 = 1690 MeV, Zs = 1.14(2), ΣMS(2 GeV) = (233 ± 5 MeV)3
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Chiral Condensate (cont)

am

0.00 0.01 0.02 0.03 0.04 0.05 0.06

0.000

0.001

0.002

0.003

0.004

0.005

0.006

a3 �

163x32, �=2.30, mval=msea

JLQCD-TWQCD Collaborations/topsus/b230

no. of low-lying eigenmodes = 50+50

no. of configurations = 396

lim
m→0

a3Σ = 0.0024(1) (linear fit)

Use a−1 = 1690 MeV, Zs = 1.14(2), ΣMS(2 GeV) = (236 ± 5 MeV)3
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Conclusion and Outlook

� For the topologically-trivial gauge configurations
generated with nf = 2 dynamical overlap quarks
constrainted by extra Wilson and pseudofermions,
they possess topologically non-trivial excitations (e.g.,
instanton and anti-instanton pairs) in sub-volumes.

� These near-zero modes allow us to determine
χtop and Σ.

� In the chiral limit, the Leutwyler-Smilga relation is
realized !

� Similar studies for Qtop = 2, and Qtop = 4 sectors are
now in progress.
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